Allotropes of boron
Elemental boron can exist in several allotropes, the most common of which are crystalline boron and brown amorphous boron. Crystalline boron has four major polymorphs: α, β, γ and T. Whereas the β phase is most stable and others are metastable, the transformation rate is negligible at room temperature, and thus all those phases can exist at ambient conditions.
Crystalline boron is a very hard (Vickers hardness comparable to that of cubic boron nitride), black, diamagnetic material with a melting point of 2080 °C.[1] Pure elemental boron is difficult to extract. The earliest methods involved reduction of boric oxide with metals such as magnesium or aluminum. However the product is almost always contaminated with metal borides. Pure boron can be prepared by reducing volatile boron halides with hydrogen at high temperatures.[2][3] Very pure boron, for the use in semiconductor industry, is produced by the decomposition of diborane at high temperatures and then further purified with the zone melting or Czochralski processes.[4] Even more difficult is to prepare pure single crystals of pure boron phases, because of polymorphism, reactivity of boron with impurities, etc.; typical crystal size is ~0.1 mm.[5]
Summary of properties
α-rhombohedral boron
α-rhombohedral boron has a unit cell of twelve boron atoms. The structure consists of B12 icosahedra in which each boron atom has five nearest neighbors within the icosahedron. If the bonding were the conventional covalent type then each boron would have donated 5 electrons. However, boron has only 3 valence electrons, and it is thought that the bonding in the B12 icosahedra is achieved by the so-called 3-center electron-deficient bonds where the electron charge is accumulated at the center of a triangle formed by 3 adjacent atoms.[12]
The isolated B12 icosahedra are not stable; thus boron is not a molecular solid, but the icosahedra in it are connected by strong covalent bonds.
β-rhombohedral boron
β-rhombohedral boron has a subcell containing 105–108 atoms — or a unit cell of 320 atoms. Many atoms form B12 icosahedra, but there are also a large number of non-icosahedral atoms as well. For long time, it was unclear whether the α or β phase is most stable at ambient conditions; however, gradually a consensus was reached that β phase as the thermodynamically stable allotrope.[6][14][15]
γ-boron
The γ-phase can be described as a NaCl-type arrangement of two types of clusters, B12 icosahedra and B2 pairs.[6] It can be produced by compressing other boron phases to 12–20 GPa, heating to 1500–1800 0C and is quenchable to ambient conditions.[6][7][11] There is evidence of significant charge transfer from B2 pairs to the B12 icosahedra in this structure;[6] in particular, lattice dynamics suggests the presence of significant long-range electrostatic interactions.
This phase was reported by Wentorf in 1965,[7][16] however neither structure nor chemical composition were established. The structure was solved using ab initio crystal structure prediction calculations[6] and confirmed using single crystal X-ray diffraction.[11]
Tetragonal boron phases
Two tetragonal phases have been reported, T-50 (or α-tetragonal boron)[17] and T-192 (or ß-tetragonal boron) with 50 and 192 atoms in the unit cell, respectively. Whereas T-50 has been assigned to a compound (nitride (B50N2) or carbide (B50C2)),[8] T-192 is a genuine pure boron phase. It was produced in 1960 by hydrogen reduction of BBr3 on hot tungsten, rhenium or tantalum filaments at temperatures 1270–1550 °C (i.e. chemical vapor deposition).[9] Further studies have reproduced the synthesis and confirmed the absence of impurities in this phase.[18][19][20][21]
High-pressure superconducting phase
Compressing boron above 160 GPa produces a boron phase with an as yet unknown structure. Contrary to other phases, which are semiconductors, this phase is a metal and becomes a superconductor with a critical temperature increasing from 4 K at 160 GPa to 11 K at 250 GPa.[22] This structural transformation occurs at pressures at which theory predicts the icosahedra to dissociate.[23]
Amorphous boron
Amorphous boron contains B12 regular icosahedra that are randomly bonded to each other without long range order.[24][25] Pure amorphous boron can be produced by thermal decomposition of diborane at temperatures below 1000 °C. Annealing at 1000 °C converts amorphous boron to β-rhombohedral boron.[26] Amorphous boron nanowires (30–60 nm thick)[27] or fibers[28] can be produced by magnetron sputtering and laser-assisted chemical vapor deposition, respectively; and they also convert to β-rhombohedral boron nanowires upon annealing at 1000 °C.[27]
References
- ^ D. R. Lide (ed) (2003). "Section 4, Properties of the Elements and Inorganic Compounds; Melting, boiling, and critical temperatures of the elements". CRC Handbook of Chemistry and Physics, 84th Edition. Boca Raton, Florida: CRC Press.
- ^ D. R. Stern; Lynds, Lahmer (1958). "High-Purity Crystalline Boron". Journal of the Electrochemical Society 105 (11): 676. doi:10.1149/1.2428689.
- ^ A. W. Laubengayer; D. T. Hurd; A. E. Newkirk; J. L. Hoard (1943). "Boron. I. Preparation and Properties of Pure Crystalline Boron". Journal of the American Chemical Society 65 (10): 1924. doi:10.1021/ja01250a036.
- ^ L. I. Berger (1996). Semiconductor materials. CRC Press. pp. 37–43. ISBN 0-8493-8912-7.
- ^ a b G. Will, B. Kiefer (2001). "Electron Deformation Density in Rhombohedral a-Boron". Zeitschrift für anorganische und allgemeine Chemie 627 (9): 2100. doi:10.1002/1521-3749(200109)627:9<2100::AID-ZAAC2100>3.0.CO;2-G.
- ^ a b c d e f g h A.R. Oganov, J. Chen, C. Gatti, Y.-M. Ma, T. Yu, Z. Liu, C.W. Glass, Y.-Z. Ma, O.O. Kurakevych, V.L. Solozhenko (2009). "Ionic high-pressure form of elemental boron". Nature 457 (7231): 863–867 (free download). Bibcode 2009Natur.457..863O. doi:10.1038/nature07736. PMID 19182772. http://mysbfiles.stonybrook.edu/~aoganov/files/Boron-Nature-2009.pdf.
- ^ a b c d R. H. Wentorf Jr (1965). "Boron: Another Form". Science 147 (3653): 49–50 (Powder Diffraction File database (CAS number 7440–42–8)). Bibcode 1965Sci...147...49W. doi:10.1126/science.147.3653.49. PMID 17799779. http://www.sciencemag.org/cgi/content/abstract/147/3653/49.
- ^ a b J. L. Hoard, D. B. Sullenger, C. H. L. Kennard, R. E. Hughes (1970). "The structure analysis of β-rhombohedral boron". J. Solid State Chem. 1 (2): 268–277. Bibcode 1970JSSCh...1..268H. doi:10.1016/0022-4596(70)90022-8.
- ^ a b C. P. Talley, S. LaPlaca, and B. Post (1960). "A new polymorph of boron". Acta Crystallogr. 13 (3): 271. doi:10.1107/S0365110X60000613.
- ^ V. L. Solozhenko, O. O. Kurakevych and A. R. Oganov (2008). "On the hardness of a new boron phase, orthorhombic γ-B28". Journal of Superhard Materials 30 (6): 428–429. doi:10.3103/S1063457608060117.
- ^ a b c d e E. Yu. Zarechnaya; Dubrovinsky, L.; Dubrovinskaia, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V.; Miyajima, N.; El Goresy, A. et al. (2009). "Superhard Semiconducting Optically Transparent High Pressure Phase of Boron". Phys. Rev. Lett. 102 (18): 185501. Bibcode 2009PhRvL.102r5501Z. doi:10.1103/PhysRevLett.102.185501. PMID 19518885.
- ^ a b R. J. Nelmes et al. (1993). "Neutron- and x-ray-diffraction measurements of the bulk modulus of boron". Phys. Rev. B 47 (13): 7668. Bibcode 1993PhRvB..47.7668N. doi:10.1103/PhysRevB.47.7668.
- ^ ed. O. Madelung (1983). Landolt-Bornstein, New Series. 17e. Springer-Verlag, Berlin.
- ^ van Setten M.J., Uijttewaal M.A., de Wijs G.A., de Groot R.A. (2007). "Thermodynamic stability of boron: The role of defects and zero point motion". J. Am. Chem. Soc. 129 (9): 2458–2465. doi:10.1021/ja0631246. PMID 17295480.
- ^ Widom M., Mihalkovic M. (2008). "Symmetry-broken crystal structure of elemental boron at low temperature". Phys. Rev. B 77 (6): 064113. Bibcode 2008PhRvB..77f4113W. doi:10.1103/PhysRevB.77.064113.
- ^ E.Yu. Zarechnaya, L. Dubrovinsky, N. Dubrovinskaia, N. Miyajima, Y. Filinchuk, D. Chernyshov, V. Dmitriev (2008). "Synthesis of an orthorhombic high pressure boron phase". Science and Technology of Advanced Materials 9 (4): 044209. Bibcode 2008STAdM...9d4209Z. doi:10.1088/1468-6996/9/4/044209. http://www.iop.org/EJ/article/1468-6996/9/4/044209/stam8_4_044209.pdf.
- ^ J. L. Hoard; R. E. Hughes; D. E. Sands (1958). "The Structure of Tetragonal Boron". Journal of the American Chemical Society 80 (17): 4507. doi:10.1021/ja01550a019.
- ^ D. B. Sullenger, K. D. Phipps, P. W. Seabaugh, C. A. Hudgens, D. E. Sands, J. S. Cantrel (1969). "Boron Modifications Produced in an Induction-Coupled Argon Plasma". Science 163 (3870): 935–7. Bibcode 1969Sci...163..935S. doi:10.1126/science.163.3870.935. PMID 17737317.
- ^ E. Amberger and K. Ploog (1971). "Bildung der gitter des reinen bors". J. Less-Common Metals 23: 21. doi:10.1016/0022-5088(71)90004-X.
- ^ K. Ploog and E. Amberger (1971). "Kohlenstoff-induzierte gitter beim bor: I-tetragonales (B12)4B2C und (B12)4B2C2". J. Less-Common Metals 23: 33. doi:10.1016/0022-5088(71)90005-1.
- ^ M. Vlasse, R. Naslain, J. S. Kasper, K. Ploog (1979). "Crystal structure of tetragonal boron related to α-AlB12". Journal of Solid State Chemistry 28 (3): 289. Bibcode 1979JSSCh..28..289V. doi:10.1016/0022-4596(79)90080-X.
- ^ M. I. Eremets et al. (2001). "Superconductivity in Boron". Science 293 (5528): 272–4. Bibcode 2001Sci...293..272E. doi:10.1126/science.1062286. PMID 11452118.
- ^ C. Mailhiot, J. B. Grant, and A. K. McMahan (1990). "High-pressure metallic phases of boron". Phys. Rev. B 42 (14): 9033. Bibcode 1990PhRvB..42.9033M. doi:10.1103/PhysRevB.42.9033.
- ^ R.G. Delaplane et al. (1988). "A neutron diffraction study of amorphous boron". Journal of Non-Crystalline Solids 104 (2–3): 249. Bibcode 1988JNCS..104..249D. doi:10.1016/0022-3093(88)90395-X.
- ^ R.G. Delaplane et al. (1988). "A neutron diffraction study of amorphous boron using a pulsed source". Journal of Non-Crystalline Solids 106: 66. Bibcode 1988JNCS..106...66D. doi:10.1016/0022-3093(88)90229-3.
- ^ J. S. Gillespie Jr. (1966). "Crystallization of Massive Amorphous Boron". J. Am. Chem. Soc. 88 (11): 2423. doi:10.1021/ja00963a011.
- ^ a b Y. Q. Wang; Duan, X. F. (2003). "Crystalline boron nanowires". Appl. Phys. Lett. 82 (2): 272. Bibcode 2003ApPhL..82..272W. doi:10.1063/1.1536269.
- ^ S. Johansson et al. (1992). "Microfabrication of three-dimensional boron structures by laser chemical processing". J. Appl. Phys. 72 (12): 5956. Bibcode 1992JAP....72.5956J. doi:10.1063/1.351904.